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aHuman Development and Family Studies, The Pennsylvania State University; bThe Robotics Institute, Carnegie Mellon University;
cDepartments of Psychology, Pediatrics, Music Engineering, Electrical and Computer Engineering, University of Miami; dDepartments
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ABSTRACT
Head movement is an important but often overlooked component of emotion and social
interaction. Examination of regularity and differences in head movements of infant-mother
dyads over time and across dyads can shed light on whether and how mothers and infants
alter their dynamics over the course of an interaction to adapt to each others. One way to
study these emergent differences in dynamics is to allow parameters that govern the pat-
terns of interactions to change over time, and according to person- and dyad-specific char-
acteristics. Using two estimation approaches to implement variations of a vector-
autoregressive model with time-varying coefficients, we investigated the dynamics of auto-
matically-tracked head movements in mothers and infants during the Face-Face/Still-Face
Procedure (SFP) with 24 infant-mother dyads. The first approach requires specification of a
confirmatory model for the time-varying parameters as part of a state-space model, whereas
the second approach handles the time-varying parameters in a semi-parametric (“mostly”
model-free) fashion within a generalized additive modeling framework. Results suggested
that infant-mother head movement dynamics varied in time both within and across epi-
sodes of the SFP, and varied based on infants’ subsequently-assessed attachment security.
Code for implementing the time-varying vector-autoregressive model using two R packages,
dynr and mgcv, is provided.
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Self-organization is a process through which orderli-
ness emerges from apparent disorder (Lewis &
Ferrari, 2001). The idea of self-organization is deeply
entrenched in psychology (Bosma & Kunnen, 2011;
Kelso, 1995; Magnusson & Cairns, 1996). In the area
of human movement, for example, a simple motion
involves approximately 102 muscle, 103 joints, and
1014 cells. Yet, as our bodies are capable of self-organ-
ization, human movements can be effectively captured
by changes in a few key dimensions (Bertenthal, 2007;
Turvey, 1990). Newell (1990) proposed a time scale of
human action that organizes study interests in the
field of psychology into a set of hierarchical levels of
analysis. According to Newell’s classification scheme,
changes occurring in the human body include neural
activities that unfold over milliseconds, simple cogni-
tive operations (such as directing attention) that
evolve over seconds, rational decision-making proc-
esses that unfold over minutes or hours, as well as
social processes (e.g. forming a relationship) that

occur on the scales of days, weeks, or even months
(Bertenthal, 2007). Self-organization comes into play
naturally in change processes that emerge as an inte-
grated result of activities across different levels, and
alternatively, time scales.

Interpersonal coordination of movements, includ-
ing head movements — the focus of our motivating
empirical illustration, are characterized by self-organ-
izing change processes that unfold over multiple time
scales (Kelso, 1995). Imagine a hypothetical scenario
in which two individuals are conversing with each
other. In this case, each individual is constantly
attending to the other individual’s bodily cues such as
head nodding/shaking, postures, and other quick
second-by-second movements; making periodic infer-
ences of the other individual’s emotions or interest
level based on these bodily cues; and adjusting his/her
own emotions and behaviors accordingly. We may
notice that the conversation progresses from delivery
of cordial updates to engagement in an exciting — or
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even heated — debate, and eventually cools down as
the conversation comes to an end. The conversation is
thus a self-organizing process that encompasses mul-
tiple types of social and cognitive sub-processes at a
micro level. The utilization of dynamic systems theory
emphasizes both the observed expression of the pro-
cess as well as its temporal evolution as a whole
(Nowak & Lewenstein, 1994). A dynamic systems
model thus allows us to extract and formulate key
patterns of change as simplified mathematical equa-
tions with a manageable set of parameters, that can
further be evaluated against empirical data using tar-
geted analytic tools and techniques of choice (van
Geert, 2018). The same dynamic system model with
different sets of parameters can manifest very different
observed trajectories through time. Therefore, allow-
ing the parameters in a model to comprise multi-
timescale changes provides one viable way of repre-
senting the over-time progression of such a self-
organizing process.

Substantial work exists in the econometric, statis-
tical, engineering, as well as social and behavioral sci-
ences literature on longitudinal models with time-
varying parameters (TVPs). Varying coefficent models,
which were popularized by Hastie and Tibshirani
(1993), originally involve cross-sectional models that
posit varying relationships between predictors and the
outcome as functions of covariates. These varying
coefficients are often approximated using spline or
functional data analysis methods nonparametrically
(completely model-free), or semiparametrically (par-
tially model-free, with spline methods embedded
within a model that includes other parametric compo-
nents). Extensions to the longitudinal context with
time as a covariate have gained popularity in the past
decade (e.g., Cao et al., 2012; Liang et al., 2010; Wu &
Tian, 2018). Increased applications have also emerged
in the psychological literature (Bringmann et al., 2017;
McKeown & Sneddon, 2014), sometimes under the
alternative name of time-varying effect model (TVEM;
Li et al., 2014), particularly in examining substance
use and intervention-related issues (e.g. Shiyko, Naab,
Shiffman, & Li, 2014; Vasilenko et al., 2014). Beyond
the spline and functional data literature, variants of
discrete-time (e.g., autoregressive models with TVPs;
Chow et al., 2010; Del Negro & Otrok, 2008; Harvey,
2001; Molenaar, 1987, 1994; Molenaar et al., 2009;
Prado et al., 2001; Rajan & Rayner, 1996; Tarvainen
et al., 2006; Wang et al., 2014; Weiss, 1985) and con-
tinuous-time models (Chen et al., 2018) with TVPs
have also been proposed and estimated within a time
series and state-space context, and used to represent a

broad range of phenomena from individuals’ physio-
logical responses (Molenaar, 1994; Tarvainen et al.,
2006), glucose level (Wang et al., 2014), affect (Chow
et al., 2009; 2011), and dyadic coupling between indi-
viduals (Chow et al., 2010; Molenaar et al., 2009).

In this paper, we consider and illustrate two
approaches to implement variations of a vector autor-
egressive (VAR) model with TVPs, which in the
remaining of this paper will be referred to as a time-
varying VAR (TV-VAR) model, to evaluate the
dynamics of head movements in mothers and infants
during the Still Face paradigm (SFP). The first
approach, referred to herein as the state-space model-
ing approach, requires specification of a model for the
TVPs as part of the dynamical systems model describ-
ing the endogenous processes of interest (Chow et al.,
2011; Molenaar et al., 1992) — in this case, infant and
mother head movements. The TVP model can, in
turn, include time-, person-, and/or dyad-specific pre-
dictors. Depending on the model adopted for the
TVPs, the state-space approach may vary from semi-
parametric to strictly parametric (confirmatory) in
nature. Here, we specify a theory-driven parametric
model under the state-space approach to sharpen its
contrasts with the second modeling approach. The
second approach handles the TVPs in a semi-para-
metric (partially model-free) fashion within a general-
ized additive modeling (GAM) framework (Bringmann
et al., 2018). Using data from the SFP and two R (R
Core Team, 2018) packages, Dynamic Modeling in R (
dynr; Ou et al., 2019) and mgcv (Wood, 2019), we
demonstrate and compare the results from the two
modeling approaches as well as their respective
strengths and weaknesses.

The remainder of this paper is organized as follows.
We first present the motivating example to highlight
some of the key questions of interest in utilizing head
movement to study early parent-infant interactions.
We then introduce the TV-VAR model, followed by a
description of the adaptations made by us to capture
targeted parent-infant interaction changes during the
SFP. Next, we present the two approaches for fitting
TV-VAR models investigated in the present paper,
followed by the corresponding estimation details (with
demonstrative R code in Appendix). Then, we present
empirical modeling results from the motivating
example, and demonstrate how the two modeling
approaches can provide distinct but complementary
insights on differences in interactive dynamics over
time and between dyads. We conclude with some
remarks on the contributions and limitations of the
two modeling approaches and the empirical study.
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Motivating example: head movement
dynamics in infant-parent interactions

Parent-child co-regulation is an important aspect of early
self-regulation often regarded as a precursor of self-
initiated regulatory behaviors in later childhood. In the
first three years of life, children progressively gain a variety
of abilities that allow them to manage different levels of
regulation, from being soothed by parents and other
caregivers to self-initiated soothing and control, to active
regulation of one’s own emotions and behaviors (Kopp,
1982; Rothbart et al., 1992). Before six months of age, self-
regulation in infants mainly consists of modulating states
of arousal (Calkins, 2011; Feldman, 2003; Kopp, 1982).
Before infants can achieve self-initiated regulation, they
rely heavily on input and feedback from their parents.
At the same time, parents’ emotional and behavioral
states are affected by their infants’ behaviors, valence, and
arousal levels (Chow et al., 2010; Cohn & Tronick, 1988;
Jaffe et al., 2001). That is to say, in the interactions and
co-regulatory processes between infants and parents, the
future states of the individual(s) depend on current action
and reaction of the individual as well as those of the
partner. This is in line with the view of infant-caregiver
interaction as a dynamical system, and it is possible to
extract and express the complex patterns of synchrony
and mismatches in infant-caregiver interaction over time
as specific patterns of change over time (van Geert, 2018).

Head movement, just as vocalization and facial
expressions, is an important behavioral aspect of emo-
tion communication and social interaction. Previous
research has provided evidence that overall movements,
including head movements, provide information about
the intensity of arousal (Ekman & Friesen, 1974;
Kleinsmith & Bianchi-Berthouze, 2013; Wallbott, 1998).
Humans often use head movements to convey and detect
emotional intensity and meaning (Hammal et al., 2014;
2015; Michel et al., 1992), and they serve special func-
tions in communication practices such as turn-taking
and back-channeling (Duncan, 1972; Jokinen et al., 2010;
Michel et al., 1992). However, unlike vocalization and
facial expressions, which are commonly investigated in
research through voice intonation analysis and face rec-
ognition tools, information and affect transmission via
head movements are often overlooked despite their cen-
tral roles in human communication.

Advances in automated, unobtrusive, continuous
annotation of behavior now make it feasible to gather
intensive head tracking data through automated soft-
ware programs (e.g. Cox et al., 2013; Jeni et al., 2017).
Unlike emotional coding schemes that require human
coders, automated measures such as head movements
are less prone to subjective human biases, and have

been shown to be a valid and meaningful alternative
to human coding. Research has been sparse in
investigating head movements in the context of
emotion communications, and especially so in studies
of co-regulation. Previous work from Hammal et al.
(2015) suggested that quantitative measures of head
movements in parent-infant interactions were strongly
associated with age-appropriate emotion challenges,
thus opening up the new possibilities of using auto-
mated head movement measures to uncover charac-
teristics of dyadic dynamics during these interactions.

The current article presents analysis of the data from a
previously published study in Hammal et al. (2015) for
investigating face-to-face interactions through the channel
of head movements under the experimental manipulation
of the SFP. The original sample consisted of 42
parent-infant dyads, and 10 more dyads became available
for analysis since then, resulting in a total of 52 dyads.
The SFP (Tronick et al., 1978) consists of three equal-
length (lasting two minutes each) but distinct episodes
(Face-to-Face (FF), Still Face (SF) and Reunion (RE)) of
parent-infant interaction. It is intended to assess parent-
infant reciprocity and infant response to, and recovery
from, disturbance of normal dyadic interactive behavior.
As briefly as each episode lasts within the SFP, a previous
study by Chow et al. (2010) reported substantial over-time
variations (non-constancy) in the dynamics between
mothers and infants even within the FF and RE episodes
based on human rater data. Yet to be clarified, however,
are whether such over-time variations are also evidenced
in infant-mother interactive head movement dynamics,
and the practical implications of such within-episode
variations. Thus, the present study seeks to address: (1)
within- and between-episode variability in infant-mother
interactive head movement dynamics; (2) whether these
sources of variability relate to meaningful between-dyad
differences, such as attachment outcome; and within-dyad
contextual differences, such as under positively as
compared to negatively valenced interactions; and (3)
consistency in the modeling results as deduced from the
GAM vs. the state-space modeling approach.

Data descriptions and preprocessing

To quantify head movement dynamics, a person-
independent 3D face tracker (Zface1), was used to
track the 3 degrees of rigid head movements (i.e.,
pitch, yaw, and roll) and 49 facial landmarks, or fidu-
cial points, from video recordings on the interactions
(Jeni et al., 2017). Head angles in the horizontal

1The current version of the software is now publicly available at https://
github.com/department-of-psychology/AFARtoolbox.
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(i.e., pitch), vertical (i.e., yaw), and lateral (i.e., roll)
directions were used for analysis. A total of 15% of
the video frames could not be tracked. Several condi-
tions contributed to tracking failure, including self-
occlusion (hands on the face), extreme head move-
ment, and location change (i.e., child moved out of
the frame). Proportions of successfully tracked frames
were used for analyses. The raw data contained over
3700 measurement occasions per participant per epi-
sode, with a sampling rate of one measurement every
33.366 milliseconds. Our interest is in studying the
individuals’ conscious and unconscious self-regulation
and interactions, which in Newell’s time scales of
human action, would falls within the “deliberate act”
band which is on the unit of 100 milliseconds, or the
“operations” band which is on the unit of seconds
(Newell, 1990). We were particularly interested in
capturing the latter. Thus, we performed data aggrega-
tion over every 15 frames to smooth out micro-level
noise that may be too fine-grained for the interactive
process of our interest, so that the time elapsed
between two consecutive measurements was roughly
0.5 second. To ensure sufficient data for ascertaining
system dynamics, we included only the dyads meeting
the following two criteria for each dyad member: (1)
the maximum length of successive missing data points
did not exceed 120 (which translates roughly to
60 seconds, namely, at least half of the data from each
episode were available); and (2) there existed at least
40 successive observed data points in all of FF, SF and
RE episodes after data aggregation. Following these
exclusion criteria, 24 dyads were retained from the
sample. The average number of non-missing aggre-
gated measurements was 665.2 during the entire SFP,
with a minimum of 583 and a maximum of 737 (FF:
mean 228.8, min. 153, max. 248; SF: mean 229.5, min.
152, max. 248; RE: mean 221.9, min. 173, max. 248).
The mean infant age in this sample was 3.98months,
with a standard deviation of 0.34months.

For each participant (mother or infant), the three
head angle measures (i.e., pitch, yaw, and roll) were
then combined into a single variable by calculating
the Mahalanobis distances (MDs) from the partici-
pant’s baseline angles on a reference occasion, defined
as the beginning of each episode (i.e., the first avail-
able measurement in FF, SF or RE), as:

MDðxi, p, tjepÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi, p, t � lep, i, p, 1Þ>S�1

p ðxi, p, t � lep, i, p, 1Þ
q

(1)

where xi, p, t is a vector of observed three dimensions
(½pitchi, p, t , yawi, p, t , rolli, p, t�). The i, p, and t subscripts
denote, respectively, dyad i, group p (which can

further take on the value of b for infant or m for
mother), and time t. The mean or “center point” for
distance calculation, lep, i, p, 1, is a vector containing
the pitch, yaw, and roll measures for mother/infant i
on the first occasion of each episode for each partici-
pant within dyads (½pitchi, p, 1, yawi, p, 1, rolli, p, 1�ep). These
initial head angles corresponded to the first instance
of valid, front-facing video images of the dyads before
other episode-related changes unfolded, and thus
served as a practical reference point for our modeling
purposes. Sp is the group- (mothers or infants)
specific covariance matrix. For infants, we used the
covariance of these three measures across all episodes
(Sb ¼ covððpitchb, yawb , rollbÞ>Þ). For mothers, we used
the covariance matrix of these three measures in the FF
session only, Sm ¼ covððpitchm, FF , yawm, FF , rollm, FFÞ>Þ,
to have a covariance matrix that better reflected moth-
ers’ typical ranges of head movements. Person-specific
linear trends were then removed from all participants’
aggregated head movement within each episode, and
the resulting data were re-standardized using the
group-wise standard deviations (i.e., with all mothers in
one group and all infants in the other) computed using
data across all three episodes. We chose to standardize
the data across all episodes using the group standard
deviations, as opposed to standardizing within each
episode with each individual’s own within-episode
standard deviation, to perserve some between-
individual differences in data variability to be captured
with the TVPs. In the remaining of the article, the
detrending step and scaling step together are referred to
as “data preparation” for short.

For illustration purposes, Figure 1 contains the
plotted observed head movement data for three ran-
domly sampled dyads through SPF before and after
data preparation. The plots indicate that the data pre-
processing procedures helped remove some of the
arbitrary shifts in head positions as the participants
transitioned through the SFP episodes, while also pre-
serving some of the between-dyad and between-epi-
sode differences of interest in this study. Furthermore,
Figure 2 offers a visual mapping of the resulting MD
measures to the original video clip during SF. At the
beginning of the SF episode, this specific child was
showing minimal movements, which, in turn, resulted
in MD values that were around 0. Toward the later
half of the episode, the child began to show a greater
range of head movements (e.g. lifting head and look-
ing up, turning to the right, edging and looking left in
the last three screen shots). These increased head
movements were, in turn, evident from the larger
absolute MD values.

4 M. CHEN ET AL.



Smiling in parent-infant face-to-face interaction is
often studied in the context of emotional communica-
tion. Infants tend to respond to mothers’ smiling
expressions with their own smiles, and seeing the smile
for their own mothers elicits a response in the brain
region associated with positive affect information and
reward mechanism (Minagawa-Kawai et al., 2009). To
investigate contextual differences in head movement

dynamics under positively vs. negatively valenced inter-
actions, we used a binary marker of mother smiling by
applying a previously validated smile detection classifier
(adapted from Girard et al., 2015). Inter-system agree-
ment between the classifier and expert manual annota-
tion was moderate to high (j¼ 0.71).

As a marker of between-dyad differences, we used
Richters’ Attachment Security Scale (Richters et al.,

Figure 2. A plot of the MD time series computed for one infant during the SF episode with screen shots from the original video
clip. The increases in head movement magnitude during the later half of the episode correspond well with the increases in affect
arousal manifested by the infant.

Figure 1. Head movement data before and after data preparation procedures for three randomly selected three dyads.
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1988). This scale provided a continuous index of
attachment security derived from expert ratings of the
Strange Situation (Ainsworth et al., 1978) adminis-
tered to the infants in this study at 15months of age.

TV-VAR models

In this paper, we utilized a series of TV-VAR models to
examine our questions of interest. The TV-VAR model is
a multivariate discrete-time dynamic system model that
allows us to capture patterns of temporal dependencies
both within an individual and also between dyadic mem-
ber simultaneously. In addition, it allows the temporal
dependencies to vary over time through incorporation of
TVPs. To ease presentation, we begin our illustration with
a VAR model with time-invariant parameters.

Imagine a hypothetical scenario in which a mother
tries to comfort a frustrated, crying infant. With time,
the arousal level of the child is likely to decline if the
mother helps the child regulate (e.g. by employing strat-
egies such as distraction or verbal soothing). Despite the
mother’s help, the child may not calm down instantly,
that is, the child would likely exhibit a certain level of
continuity of the previous high arousal. The mother’s
effect, the child’s own continuity in arousal, and other
sources of stochastic influences from the environment
can all be incorporated into a model that describes the
fluctuations in the child’s arousal levels around a base-
line, or a desired level of arousal that reflects the child’s
own temperament, for instance. A similar process can be
applied to the mother in this scenario as well. Observing
the infant’s crying may increase the arousal level of the
mother. The mother’s arousal level would also show
some continuity in this case as the mother tries to self-
regulate. As such, we can also describe the mother’s
arousal level as a process that fluctuates around her own
baseline, and the extent of deviations from baseline, in
turn, would exert an influence on the child’s deviations
in arousal from the child’s baseline. Following these char-
acteristics, we can model the arousal levels of the mother
and infant over the course of this interaction with the fol-
lowing VAR model of order 1:

infantit
motherit

� �
¼ intb

intm

� �
þ arb crmb

crbm arm

� �
infanti, t�1 � intb
motheri, t�1 � intm

� �

þ fb, it
fm, it

� �
,

fb, it
fm, it

� �
� N

�
0,

wb
wbm wm

� ��
,

(2)

in which i indexes dyad (i ¼ 1, 2, :::, N, where N is
the total number of dyads in a sample). In the above

scenario, N¼ 1 and t indexes time measured at
discrete, equidistant values (t¼ 1, 2, :::, Ti. Ti is the
maximum of time index for dyad i). The system varia-
bles, infantit and motherit, correspond to arousal levels
as indicated by head movements in dyad i at time t of
the infant and the mother respectively. The intercept
parameters, intm and intb, describe the levels that
the system variables evolve around. The dynamic
evolutionary patterns of the system are described by
four parameters: arb and arm, the autoregressive (AR)
parameters, along with crmb and crbm, the cross-regres-
sion (CR) parameters. The components fb, t and fm, t ,
hereby referred to as process noises, represent random
disturbances to the system, including disturbances
caused by internal or environmental influences
that cannot be predicted by knowing the infant and
mother previous arousal levels at time t-1.

AR parameters capture the influence of system
variables on themselves over time. For example, arm
describes how much the mother’s arousal at the previous
observation (t – 1) influences the current observation (t).
Because the influence of previous observations is limited
to that from occasion t – 1, Equation 2 depicts a VAR
model of order 1, or VAR(1) process. In the affect litera-
ture, AR parameters are frequently referred to as inertia
(e.g. Kuppens et al., 2010), and in the regulatory litera-
ture as self-contingency (e.g. Beebe et al., 2016). It reflects
the temporal influence of an individual’s state of interest
on itself, and thus the continuity of behaviors or emo-
tions. Emotional inertia can be noted as the resistance to
change. A high AR value suggests that an individual’s
current state can be largely predicted using his or her
previous state, thus extreme emotions are more likely to
persist and less responsive to environmental influence or
regulatory efforts. Therefore, emotional inertia is often
associated with ineffective emotional regulation and psy-
chological maladjustmnents (Kuppens et al., 2010). Here,
we adopt the term inertia to denote the AR parameters
to better reflect predictability and rigidity of movements.
Further, we use the term state throughout broadly to
refer to an individual’s unobserved underlying process of
interest (e.g., emotional valence or arousal).

Figure 3 demonstrates the hypothetical dyadic
trajectories of Equations 2 with relatively2: (a) high
AR values (arm ¼ arb ¼ 0.8), and (b) low AR values
(arm ¼ arb ¼ 0.5). In this scenario, a value of 0 repre-
sents a dyad member’s average level of arousal, higher
positive numbers indicate higher arousal than average,
and negative numbers represent lower arousal than
average. To elucidate the trajectories of the system in

2R code for simulating data and reproducing Figure 3 is included in the
Supplementary Material.
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the presence/absence of process noises, we added pro-
cess noises starting only after time ¼ 60. If the two
members start from states far away from their desired
stable states (in Figure 3 set to a value of zero), it
takes the dyad 16 time units in the high AR scenario,
but only 7 time units in the low AR scenario, for the
dyad members to return to their stable state in the
absence of new process noises. In other words, under
low AR values, mother and infants are less resistant to

change, thus making the other person’s influence
more salient. From the 60th time unit on, an identical
two-dimensional sequence of process noises is added
to all the systems in Figure 3. Here the trajectories
become “rougher” and are harder to predict based on
information from time t – 1. That is, the inclusion of
process noises has now made these processes stochas-
tic. The high AR scenario in (a) is characterized by
longer and more extreme bouts of ebb and flow

Figure 3. Realizations of the same VAR model in Equation 2 can look very different depending on the parameter values. No process
noise is added before the 60th time unit so that the trajectories are entirely driven by the AR and CR parameters. The vertical dashed
green line and the associated value on the x-axis represent the time when both dyadic members arrive at a stable state. After the
60th time unit (vertical dotted line), the identical sequence of bivariate process noises are added to trajectories in each plot.
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compared to the low AR scenario (b), where the fluc-
tuations are smaller in magnitudes and clutter more
closely around the baseline of zero.

The CR parameters capture the influence of system
variables on each other. For example, in Equation 2,
crbm indicates how much the infant’s arousal at the
previous observation affects the mother’s arousal at the
current observation. The CR parameters can capture
the relation in behaviors between two dyad members
as indicated by Granger causality (Molenaar, 2019),
after taken into consideration the continuity carried by
the members themselves (as accounted for by the AR
parameters). Beebe et al. (2016) also referred to this
type of relation as “interactive contingency” because it
reflects one member’s adjustment in state relative to
the other member’s prior state. The subfigures (a), (c),
(d), and (e) in Figure 3 represent four scenarios of
Equations 2, each with a different set of the CR param-
eter values: (a) positive for both parameters, (c) zero
for both CR parameters (thus no interactive contin-
gency at all), (d) positive value for one CR parameter
and negative value for the other, and (e) negative for
both parameters. In (c), there is no interactive contin-
gency at all, as in a scenario where the mother and
infant show no interactive contingency with respect to
each other whatsoever. It takes 25 time units for both
trajectories to converge at a state level (zero) without
any noise or disturbance to the system. Subfigure (a)
represents a scenario where the trajectories are pulled
toward each other, yielding a more efficient co-regu-
lated system that converges to their stable states faster
(16 time units) compared to when no interactive con-
tingency is present. In contrast, (e) represents a scen-
ario where there is a weak “anti-regulatory” force
against each other. In such a scenario, when the
mother is trying to respond to the infant’s heightened
emotional arousal with a lower level of arousal, condi-
tional on the fact that their arousal states started from
opposite directions, such a mismatch in arousal levels
and the “anti-regulatory force” create further delays
(requiring 52 time units) for the two members to calm
down toward their stable states. The last scenario, (d),
is where there is a repelling force on the infant from
the mother, and a pulling force on the mother from
the infant. This might mirror the case where the infant
is resistant to the soothing actions of the mother, and
meanwhile the mother’s arousal level is brought up by
the infant not cooperating. Without any process noise,
this system still converges to the stable level at time
unit 26.

When within-dyad differences across time exist, for
example, when the interaction dynamics changed

when entering SF, the system then violates stationar-
ity, which is a key assumption of time-series analysis.
Most commonly used definition of stationarity, the
covariance stationarity, states that the first and second
moments of the time-series data should be time-
invariant. Translated into terms in Equation 2, this
implies that the intercepts and the AR, CR dynamic
parameters need to be time-invariant. One way to
account for within-dyad variations over time, and
sometimes also between-dyad differences, in dynamics
using the VAR model is to allow for TVPs. In other
words, we can have the four dynamic parameters (i.e.
AR and CR parameters) to differ across dyads and
over time. Here we use the arb parameter in Equation
2 as an example. We can replace it with a time-and
dyad-specific version,

arb, it ¼ f ðt, arb, i, t�1, vi, xitÞ þ farb , i, t
farb , i, t � Nð0,warbÞ,

(3)

where arb, it is a function of the following components:
time (t), the value of the AR parameter at time t – 1,
arb, i, t�1, a vector of dyad-specific characteristics (vi),
a vector of time-specific predictor variables (xit). vi
may include characteristics of individual members
that constitute dyad i – in our case, the attachment
level of the infant as indicated by the Richter scores.
xit in our motivating example is a one-dimensional
exogenous time-varying binary covariate, mother’s
smile. f can be parametric or nonparametric. The
term farb , i, t, which is usually assumed to conform to
a normal distribution, represents residual or process
noise that account for deviations from the predicted
AR. If f contains only an intercept parameter
(f ð:Þ ¼ intarb) and no process noise is added, then
arb, it in Equation 3 is equivalent to the time-invariant
arb parameter in Equations 2. In fact, in model fitting
involving any potential TVP, a model with only
process noise is often fitted to that specific parameter
before any theory-driven models to see whether
representing such parameter as a TVP is necessary.
If the estimated process noise variance is different
from zero, then it provides evidence that suggests
there is enough variability in the parameter and
thus may be an indication that the parameter varies
through time. Otherwise, the parameter would be
specified as time-invariant (Chow et al., 2011).

Although in the previous paragraph we used an AR
parameter as an example, AR parameters are not the
only ones that can be time-varying. In fact, previous
work by Chow et al. (2010) found time variations in
the concurrent association between infants and parents
during FF and RE episodes using a stochastic regression
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model predicting infant emotional valence while control-
ling for previous infant valence. These results provide ini-
tial support for incorporating CR parameters as TVPs but
do not treat the dyad as a bivariate system, nor do they
model potential TVP covariates.

In summary, the standard VAR model defines
(successful) regulation and thus co-regulation of the
pair as dependent not only on the affect of the other
member (CR parameters), but also on the resistance
(or reversely, susceptibility) to change of the
individual him/herself (AR parameters). A thorough
investigation of co-regulation requires consideration
of both interactive contingency and inertia. Therefore,
to study the phenomenon of co-regulation through
the VAR model, it is important to take the entire evo-
lutionary pattern of the system into consideration, as
both AR and CR parameters provide unique but com-
plementary pieces of information concerning the
dynamics of dyadic interactions. TV-VARs extend on
the traditional VAR model with possibilities to
account for any between-dyad and across-time
differences in the dynamic system patterns. One novel
contribution of the article is to illustrate a rather
systematic investigation of the dynamic parameters
in a VAR model that may be time-varying in the
context of intensive longitudinal data on parent-infant
interactions, as well as the associations between
variations of dynamics (marked by TVPs) and dyad-
specific characteristic (infants’ later attachment) and
time-varying environmental factor (mothers’ smiles).

Estimation details for TV-VAR models

State-space approach

The state-space modeling approach operates by
incorporating the TVPs as additional latent variables
in the context of a state-space model, and
subsequently estimating the over-time fluctuations in
the TVPs with other latent variables in the system.
The specific form of state-space model we consider in
this study comprises a dynamic model expressed as:

git ¼ f gðgi, t�1, bÞ þ fit , fit � Nð0,RfÞ, (4)

and a linear measurement function written as:

yit ¼ Kgit þ �it , �it � Nð0,R�Þ: (5)

In the above model formulation, git is a p-dimen-
sional vector representing latent variables — also referred
to as “states” in the state-space literature — for the sys-
tem unit i at time t; f g (Rp ! R

p) is the state transition
function from a previously time t – 1 to the current
time t; and b is a k – dimensional vector of parameters

in f g: fit is also a p – dimensional vector, and it repre-
sents the process noise at time t. yit is a q – dimensional
vector of observed manifestations of the latent states git;
K is a q� p matrix of the measurement loading that
links the latent states git to the observed yit; and �it is a
q� dimensional vector representing measurement errors.
In the traditional VAR model, the latent states are the

system variables of interest
infantit
motherit

� ��
in Equation 2

for this study; p¼ 2

�
. In the case of TV-VAR, for

example, if we are to include a time-varying version of
arb as illustrated in Equation 3, we add another dimen-

sion in git that now it becomes
infantit
motherit
arb, it

2
4

3
5 with p¼ 3

and include a parametric model for arb, it in f g: fit then

is also three-dimensional and becomes
fb, it
fm, it

farb , it

2
4

3
5, and

the corresponding covariance matrix Rf is
wb
wbm wm
0 0 warb

2
4

3
5: In our particular example, the

observed yit is also the two-dimensional latent state vari-

able
infantit
motherit

� �
representing mother’s and infant’s head

movement. Therefore, q¼ 2 and with the inclusion of

arb, it ,K ¼ 1 0 0
0 1 0

� �
, with no measurement error

�it involved.
We used the R package dynr (Ou et al., 2018), to

implement this approach. In dynr, estimation of both
the latent states in TV-VAR and time-invariant
parameters (sometimes referred to as “dual-
estimation”) calls for three steps, which we describe
briefly in turn below. As an overview, these steps
include a filtering step to estimate the values of the
latent variables (including the TVPs) and the uncer-
tainty associated with those estimates at time t.
Filtering assumes that the observed data are only
available up to time t, and the unknown parameters
are fixed at their specified (e.g., starting) values. The
filtering then leads to by-products that can be used to
compute a raw data likelihood function. Optimization
of this raw data likelihood function with respect to
the unknown parameters essentially involves repeated
execution of the filtering step at different parameter
values until some pre-defined convergence criteria are
met. At convergence, the final (converged) parameter
estimates are used to run filtering one more time, fol-
lowed by a smoothing procedure to generate refined
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estimates of the latent variables scores using data
from all the time points.

Step 1. Filtering. To perform filtering on the latent
variables in Equations (4)-(5), the extended Kalman
filter (EKF), an extension of the linear Kalman filter
(Kalman, 1960) for nonlinear, discrete-time dynamic
models was used. As in the Kalman filter procedure,
the EKF involves iterations of prediction steps and
update steps over all subjects and time points to
yield filtered estimates of the state variables g and
the associated variance covariance structure P
(Anderson & Moore, 1979). For the filtering step, the
collection of time-invariant parameters h (consisting
of elements in fb,Rf,R�,Kg) are assumed known.
Estimation of these parameters are addressed in Step
2 with the optimization algorithm.

Let ĝi, tjt�1 denote the estimated git at the prediction
step, which utilizes information in the data up to time
t – 1, and ĝi, t�1jt�1 denote the estimated gi, t�1 at the
previous update step, which also utilizes information
up to time t–1. Pi, tjt�1 and Pi, t�1jt�1 represent, respect-
ively, their associated covariance matrices. In each
iteration of EKF, the prediction step builds up on
results from the previous iteration’s update step, which
are derived from observations fy1, :::, yt�1g, to yield:

ĝi, tjt�1 ¼D Eðgi, tjyi, 1, :::, yi, t�1Þ ¼ f gðĝi, t�1jt�1Þ (6)

Pi, tjt�1 ¼D covðgi, tjyi, 1, :::, yi, t�1Þ
¼ Jf ðĝi, t�1jt�1ÞP̂ i, t�1jt�1Jf ðĝi, t�1jt�1Þ> þ Rf, (7)

in which Jf ðĝi, t�1jt�1Þ is the Jacobian matrix of f g,
with element in the jth row and kth column being the
first-order partial derivative of the jth function in f g
with respect to the kth variable in git , evaluated at the
most current estimate ĝi, t�1jt�1:

The prediction step estimates ĝi, tjt�1 and Pi, tjt�1 are
then carried into the update step as information of yit
is utilized to further refine the state estimates as:

vit ¼D yit � Eðyitjĝi, tjt�1Þ ¼ yit � Kĝi, tjt�1

V it ¼D covðvitÞ ¼ KPi, tjt�1K
T þ R�

K it ¼ Pi, tjt�1K
TV�1

it

ĝi, tjt ¼ ĝi, tjt�1 þ K itvit
Pi, tjt ¼ Pi, tjt�1 � K itKPi, tjt�1

Here vit is referred to as prediction error at time t,
and V it is its variance. Both vit and V it are used in
the calculation of likelihood for parameter optimiza-
tion in Step 2. K it , called the Kalman gain, can be
seen as a relative weight between variability of the

predicted state estimates, the magnitudes of which are
captured by Pi, tjt�1, and the total variability of the
new observations, the magnitudes of which depend
both on the variability of the predicted state estimates,
Pi, tjt�1, and also the measurement error covariance
matrix, R�: The noisier the observations are, the lower
the Kalman gain value is. Thus less weight is given to
the new observations when updating the state pre-
dicted estimates. The current estimate of git from the
update step and its associated covariance, ĝi, tjt and
Pi, tjt are subsequently used in the next iteration of
prediction step for gi, tþ1: Pi, tjt helps quantify the
“errors” or uncertainty in the state estimates after new
data are available from time t, and is sometimes
referred to as the conditional state error covariance
matrix (Anderson & Moore, 1979).

Step 2. Parameter Estimation. Parameter estimation
is performed by finding parameter estimates that
maximize a raw log-likelihood function, also known
as the prediction error decomposition function,
that can be computed using by-products from the
filtering step. The raw data log-likelihood function is
expressed as (Chow et al., 2007; Schweppe, 1965):

log lðhÞ ¼ � 1
2

XN
i¼1

XTi

j¼1

log ð2pÞ þ log jV i, tj j þ v>i, tjV
�1
i, tjvi, tj

h i
:

(8)

The optimization algorithm employed by dynr
is a sequential quadratic programing algorithm (Kraft,
1988, 1994) from the open-source library for nonlinear
optimization, NLOPT (Johnson, 2014; Ou et al., 2018).

Step 3. Smoothing. The filtering step only uses
information up to time t for estimation of the latent
states and covariance structure, ĝi, tjt and Pi, tjt: We
can further refine these estimates using information
contained in observations from the entire time-
series, including those from time tþ 1 and so on, via
the fixed interval smoother that is run backward in
time (Ansley & Kohn, 1985; Chow et al., 2010;
Harvey, 2001):

ĝi, tjT ¼ ĝi, tjt þ ~P itðĝi, tþ1jT � ĝi, tþ1jtÞ, (9)

Pi, tjT ¼ Pi, tjt þ ~P itðPi, tþ1jT � Pi, tþ1jtÞ~P it , (10)

where ~P it ¼ Pi, tjtJf ðĝi, tjtÞ>½Pi, tþ1jt��1: This step yields
our final estimates of the latent states, including the
TVPs, The square roots of the diagonal elements in
Pi, tjT are the standard deviations of the state estimates
after all the data up to time T have been used for
estimation, and they can be used as standard errors to
form confidence intervals around ĝi, tjT : When TVPs
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are included as additional latent variables in git , the
pertinent elements in ĝi, tjT serve as estimates of
the TVPs, with confidence intervals constructed using
the corresponding square root elements in Pi, tjT :

A unique feature of the fitting TV-VAR in the
state-space framework is the capability for researchers
to specify particular functional forms for TVPs. In
theory-driven TVPs, doing so can help confirm any
particular pattern of time-varyingness of the parame-
ters and establish connections between time-varying
characteristics of dynamics and other factors that may
have influences on the dynamics (e.g. Chow et al.,
2009; Tarvainen et al., 2004). Even in cases where
theories guiding the nature of TVPs are lacking, one
can choose functions that are flexible enough as a first
probe for TVPs before making decisions about more
targeted confirmatory models (e.g. Asparouhov et al.,
2018; Chen et al., 2018) or explicitly incorporate
nonparametric functions or splines for TVPs (e.g.
Tarvainen et al., 2006; Zhu & Wu, 2007).

GAM framework approach

Another approach adopted in the present article to
estimate variations of the TV-VAR model is a GAM
framework approach. Following Bringmann et al.
(2018), we utilized GAMs through the R package,
Mixed GAM Computation Vehicle with Automatic
Smoothness Estimation (mgcv, Wood, 2019) to esti-
mate the over-time trajectories of the TVPs by means
of penalized regression splines. A GAM with depend-
ent variable y and predictors x is generally written as
(Yee, 2015):

EðyiÞ ¼ gðlðxiÞÞ

¼ b1 þ
XJ

j¼1

fjðxijÞ þ
XK
k¼Jþ1

fkðxik1Þxik2

þ
XH

h¼Kþ1

fhðxih1xih2Þ (11)

where b1 and fd (d ¼ 1, :::,H) are smooth functions,
which in mgcv are based on thin plate regression
splines3 by default. The term fjðxijÞ represents the
smooth functional effect of the j th predictor xij, an
example being a nonlinear time trend. The term
fkðxik1Þxik2 allows the effect of the kth1 predictor, xik1 ,
on y to vary as a function of the kth2 predictor (in our
case, time). This is the key term utilized in the present

article to allow the effects of the lag-1 predictors,
infanti, t�1 and motheri, t�1, to be time-varying. Finally,
fhðxih1xih2Þ is a tensor product term that allows for
approximations of jointly nonlinear effects involving
both xih1 and xih2 : Tensor product terms are not used
in the present article, but see Chow (2019) for exam-
ples of modeling with this term.

Using mgcv, we considered an alternative TV-VAR
model adapted from Equations 2—3 as:

infantit
motherit

� �
¼ f1ðtÞ

f2ðtÞ
� �

þ f3ðtÞ f4ðtÞ
f5ðtÞ f6ðtÞ

� �
infanti, t�1

motheri, t�1

� �

þ fb, it
fm, it

� �
,

fb, it
fm, it

� �
� N

�
0,

wb
wbm wm

� ��
,

(12)

and the two system variables, infanti, t and motheri, t ,
need to be manually manipulated to create the lag-1 pre-
dictors, infanti, t�1 and motheri, t�1, to be entered into
the regression as predictors. The smooth functions f1ðtÞ
and f2ðtÞ correspond to time-varying intercept parame-
ters for mothers and babies, respectively; f3ðtÞ and f6ðtÞ
correspond to time-varying AR parameters arbt and armt,
and finally f4ðtÞ and f5ðtÞ correspond to time-varying CR
parameters crmb, t and crbm, t: Compared to the original
TV-VAR model shown in Equations 2—3, one notable
difference is the inclusion of the time-varying intercept
terms, f1ðtÞ and f2ðtÞ in the model. In this case, a
researcher may opt to capitalize on the nonparametric
strengths of the GAM framework to simultaneously
model other unspecified time trends in all mothers’ and
infants’ trajectories with relative ease.

Let bd, d ¼ 1, :::, 6, represent the vector of basis
coefficients in the smooth function fd in Equation 12
and b0 ¼ ðb01, :::, b06Þ: The estimated b are then
obtained by maximizing the penalized log-likelihood:

log lðbÞ � 1
2

X6
d¼1

kdb
0
dSdbd, (13)

where kd is a penalty parameter that controls the
importance of smoothness of the approximation
curve, fd, and Sd is the “wiggliness” penalty matrix
that defines the smoothness criterion for the dth
approximation curve, fd, the deviations from which
are penalized to ensure the smoothness of fd. The col-
lection of penalty parameter k ¼ fk1, :::, k6g needs to
be selected with care to maintain a balance between
goodness-of-fit (measured by the first term in
Equation 13) and wiggliness (measured by the second
term in the equation). In mgcv, k and basis coeffi-
cients b are jointly optimized through a procedure
with nested iterations. The outer iteration handles

3In thin plate regression splines, the basis is obtained through eigen-
decomposition of a data-determined matrix. Please refer to Wood (2003)
for details.
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optimization of k using criteria such as generalized
cross-validation (GCV) and restricted maxmimum
likelihood (REML). Nested within this outer iteration
is the estimation of b by using a Newton algorithm to
maximize Equation 13 (Wood, 2019). If the dependent
variable follows a multivariate normal distribution, as
in the case of our model assumption, an approximated
REML is used, which showed better performance than
GCV in a previous simulation study (Wood, 2011).

Apart from k, the smoothness in GAM is also
affected by the number of basis functions (k). On
choosing the value of k, authors of the mgcv package
suggested running a gam.check() on a fitted GAM to
test whether the number is adequate. The test is based
on computing an estimate of the residual variance
after ordering the residuals according to the predictor
values and taking differences of successive residuals. If
the value of this estimate divided by the residual vari-
ance falls below 1, the residuals are likely to contain
patterns not already accounted for by the existing
basis expansion and one may consider doubling the
value of k and re-fittig GAM (Wood, 2019). After the
parameter estimation, mgcv uses a Bayesian approach
for deriving standard errors of predictions (and confi-
dence bands; see Marra & Wood, 2012, for details),
and also for testing the significance of the smooth
terms. Significance in mgcv is defined against the null
hypothesis that a particular smooth term fd is zero
(Wood, 2013).

The approach of TV-VAR model fitting under the
GAM framework does not rely on preexisting specula-
tions on the nature and shape of the TVPs and there-
fore offers a relatively model-free approach to TVP
estimations. However, it makes customized specifica-
tion of theory-driven TVP models difficult for the
same reason. One key advantage of the state-space
model approach over the GAM approach is the cap-
ability to include a measurement structure (Equation
5), albeit not highlighted in the current study.
Another difference between these two model fitting
approaches lies in how they handle between-unit (e.g.
dyad) differences. The state-space model approach
aims to extract a universal pattern within the sample
by constraining the time-invariant parameters and the
general predefined model for TVPs to be the same
across dyads, while preserving some between-dyad dif-
ferences in dynamics as reflected through the process
noise elements and the individual filtering and
smoothing procedures. Thus, even with the same gen-
eral model for TVPs, the estimated TVP trajectories
would still differ from one dyad to the next. In con-
trast, in the GAM framework approach, one needs to

fit a group-based model to extract, for all dyads in the
sample, a common trend for each TVP; alternatively,
one may adopt a dyad-specific approach and fit a
model separately to each dyad’s data. In the case of
group-based model fitting, the implied TVP trajectory
would be identical across dyads. Either way, incorpo-
rating theory-driven parametric functions that link
known covariates to the TVPs is not very straightfor-
ward in mgcv, by the design and nature of the pack-
age. Other spline packages exist and have other
unique strengths that are beyond the scope of the spe-
cific empirical illustration targeted in this article. We
provide a brief synopsis in the Discussion section.

Empirical results

The Empirical Results section is organized as follows:
preliminary results are first reported to showcase the
similarities and differences in results using the aggre-
gated MDs on head movement compared with the
previous published results using pitch, yaw and roll
separately; then results from the state-space approach
are presented, following a process of screening for
TVP to confirmatory model fitting with dyad- and
time-specific elements predicting TVPs with special
attention given to: a) whether CR and AR parameters
are time-varying, and if they are, whether the TVPs of
CR can be predicted by episodes and b) whether the
TVPs can be predicted by the mother’s smiles and
Richters’ Attachment Scale the infant; and finally we
represent results from GAM approach and how the
conclusions drawn from the GAM approach may be
similar or different from those from the state-
space approach.

Preliminary results on mahalanobis distances

Descriptive statistics of the MDs measures before and
after detrending with across-episode group-wise stand-
ardizations, are shown in Table 1. The aggregated
MDs between mothers and infants showed only low
to moderate concurrent and lag-1 associations, and
high lag-1 autocorrelations (Table 2). The lag-2 partial
correlations were diminished in magnitude but signifi-
cant for 51.4% of both mothers’ and infants’ time ser-
ies. Both mothers’ and infants’ post-preparation data
exhibited a certain level of nonstationary by the unit
root tests (proportion of nonstationary data: infants:
13.89% by the augmented Dickey-Fuller test, 2.78% by
the KPSS test for level stationarity; mothers: 23.61%
by the augmented Dickey-Fuller test, 9.72% by the
KPSS test for level stationarity).
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Prior to dynamic model fitting, we conducted pre-
liminary analyses to examine the veracity of the MD
measure and the effect of omitting dyads with exces-
sive missingness in the time series data. The goal here
was to compare the results reported by Hammal et al.
(2015) for a larger sample of 42 dyads in two sum-
mary measures: displacement and velocity of head
movement. Unlike Hammal et al. (2015), who per-
formed separate analyses of displacement and velocity
for pitch, yaw and roll for all 42 dyads, the results
reported here were based on the combined measure of
MD, and only from a subset of 24 dyads with suffi-
cient data for subsequent dynamic modeling. In add-
ition, the head movement measures were extracted in
the current study using a different tracker from the
one used in Hammal et al. (2015).

Between-episode differences in displacement and
velocity of MD were analyzed using repeated measures
analysis of variance (ANOVA). The effect of episodes
was not significant in the displacement levels of moth-
ers’ head MD (SS ¼ 0.059, F(2,46) ¼ 1.556, p > .05),
but was in that of infants’ (SS ¼ 0.627, F(2,46) ¼
8.672, p< 0.001). A series of post-hoc pairwise t-tests
were carried out as follow-up tests of the significant
episode effect for infant. Consonant with the results
reported in Hammal et al. (2015), significant differen-
ces in MD displacements were found between the FF
and the SF, and between the SF and the RE (Table 3).

There was also a significant SFP episode effect on
both the mothers’ and infants’ velocities in head
movements (for mothers: SS ¼ 0.048, F(2,46) ¼ 4.145,
p< 0.03; for infants: SS ¼ 0.246, F(2,46) ¼ 25.434,
p< 0.001). Post-hoc pairwise t-tests indicated signifi-
cant difference between the FF and the SF in mothers’
velocities, as well as significant differences between
the FF and the SF, and between the SF and the RE in
infants’ velocities (Table 3). These results from pre-
liminary analyses suggest that the combined, one-
dimensional MD measure of overall head movement
is able to capture most of the between-episode
differences previously found in the three dimensions
of pitch, yaw, and roll separately.

Results from state-space modeling of TV-VAR

The bivariate VAR model previously introduced in
Equations 2 were fit to the processed data. Apart from
the VAR(1) model elaborated previously, we also fit a
VAR model of order 2 (VAR(2)) given the previously
found significant lag-2 partial correlations, which in
addition to the lag-1 variables of mother and infant
movements, also included the lag-2 variables in the
model. We compared the fit of these two models
using the Akaike Information Criterion (AIC; Akaike,
1998) and Bayesian Information Criterion (BIC;
Schwarz, 1978). A lower score on either criterion sug-
gests better model fit. VAR(2) had an AIC slightly
smaller than that of VAR (1) (62812.84 vs. 62827.38)
but a larger BIC (62914.08 vs 62897.47). Given AIC’s
tendency to prefer more complicated models, we
decided to proceed with VAR(1) for model parsi-
mony. Then, TVPs were included to capture targeted
between-episode and between-dyad differences during
the SFP. To help decide whether certain TVPs were
supported, we began by fitting two unconditional
models in which either AR or CR parameters were
estimated as TVPs but not predicted using any

Table 1. Mahalanobis distance (before and after data prepar-
ation) across dyads summarized by person and episode.
Before Data Preparation (“Raw” Mahalanobis Distance)

Mother

Episode Mean (SD) Median (Min., Max.)

FF 1.413 (0.860) 1.233 (0.000, 7.967)
SF 1.491 (0.918) 1.260 (0.000, 6.829)
RE 1.852 (1.005) 1.717 (0.000, 6.546)

Infant

Episode Mean (SD) Median (Min., Max.)

FF 1.498 (1.124) 1.211 (0.000, 7.824)
SF 1.503 (0.992) 1.272 (0.000, 5.902)
RE 1.576 (0.834) 1.576 (0.000, 6.578)

After Data Preparation
Mother

Episode Mean (SD) Median (Min., Max.)

FF 0.000 (1.028) −0.089 (�4.630, 10.435)
SF 0.000 (0.784) 0.016 (�4.858, 9.410)
RE 0.000 (1.125) −0.050 (�5.485, 6.856)

Infant

Episode Mean (SD) Median (Min., Max.)

FF 0.000 (0.981) −0.052 (�8.115, 5.958)
SF 0.000 (1.095) −0.088 (�3.499, 6.563)
RE 0.000 (0.985) −0.065 (�5.026, 6.540)

Table 2. Average correlations and autocorrelations after data
preparation.

Mothert Infantt– 1 Mothert– 1

All Episodes
Infantt 0.079 0.732 0.042
Mothert 0.077 0.761
FF
Infant t 0.121 0.746 0.079
Mother t 0.122 0.695
SF
Infantt 0.083 0.719 0.051
Mothert 0.065 0.751
RE
Infantt 0.081 0.709 0.029
Mothert 0.079 0.761
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covariates or assumed to take on a particular shape
(Equation 3 with f ð:Þ ¼ intarb)

4. Figure 4 shows the
estimated trajectories from the unconditional time-
varying AR and CR parameters for two sample dyads.
Results from fitting these unconditional models sug-
gested that only the autoregression parameters (i.e.,
arb, and arm), but not the cross-regression parameters
(i.e., crmb and crbm) showed evidence as TVPs, diag-
nosed based on the statistical significance of their cor-
responding process noise variances. This is also
evident in plots (b1) to (b4) in Figure 4, that the
estimated time-varying CR trajectories from the
state-space approach were extremely flat. Therefore,
CR parameters were included in the final model
as time-invariant parameters.

Next, for the parameters determined to show
substantial within-person, over-time variations, we
added selected covariates to examine whether these
over-time variations were associated with SFP episode
and dyadic characteristics. In particular, we included
as predictors: (1) episodic information (contrast coded
into SF: SF (2) vs. others (-1) and RE: RE (1) vs. FF
(-1)); (2) contextual information about the interac-
tions: whether the mother was smiling at the moment
(“momSmileit”); and (3) and dyad-specific characteris-
tic that may contribute to differences in dynamics:
infant later attachment security (“Richteri”). We also
included person-specific variances of the head
movement measures across all episodes (denoted
as “Varb, i” and “Varm, i”) to account for other sources
of between-person variability in head movements not
captured by these three sets of covariates of interest.

arb, it ¼ bb0 þ bb1 � SFit þ bb2 � REit þ bb3

�momSmileit þ bb4 � Richteri þ bb34 �momSmileit

�Richteri þ bb5 � Varb, i þ farb , i, t, and (14)

arm, it ¼ bm0 þ bm1 � SFit þ bm2 � REit þ bm3

�momSmileit þ bm4 � Richteri þ bm34 �momSmileit

�Richteri þ bm5 � Varm, i þ farm , i, t: (15)

farb , i, t
farm , i, t

� �
� N

�
0,

warb , i, t
0 warm , i, t

� ��
(16)

Table 4 shows the estimated values for all the time-
invariant parameters in Equations 2 and 14-16 along
with the standard errors and the associated 95% confi-
dence intervals of these estimates. The unit root tests
were ran again with the residuals from this model, and
the tests indicated the data were conditionally
stationary given the model. Although the CR paramters
were found to be time-invariant, their magnitudes were
significantly different from zero. That is, we found evi-
dence for mother ! infant as well as infant ! mother
interactive contingencies during the SFP, as averaged
across all three SFP episodes. That is, overall, across all
dyads and all episodes, mothers’ head movements at the
previous time point (at a time lag of 1) were found to
negatively influence children’s current head movements
(crmb ¼ �0:011), and children’s head movements at the
previous time point positively influenced their mothers’
(crbm ¼ 0.012) at the current time point. Thus, on aver-
age across the three SFP episodes, mothers’ head move-
ment magnitudes, which we postulated to be related to
their affect arousal levels, appeared to synchronize to
infants’ previous head movements, with higher magni-
tudes of infant head movements at time t-1 leading to
higher magnitudes of mother head movements at time
t. In contrast, the negative mother ! infant interactive
contingency weight suggested the opposite patterns:
low magnitudes of mother head movement at time t-1
tended to elicit high magnitudes of infant head move-
ment at time t, and conversely, high magnitudes of
mother head movement at time t-1 tended to elicit low
magnitudes of infant head movement at time t. These
differences in interactive contingency weights may
reflect mothers’ intrinsic motivation to adapt to their
child’s head movements, and corresponding effects of
the mothers on the infants either in helping to down-
regulate intense head movements, or in eliciting more
intense movements when high magnitudes of head
movement were reciprocated with low magnitudes of
head movements from the others.

When we prepared data for analyses, linear trends
were removed for every dyad within each episode, but
all standardization was done on the non-episode-spe-
cific group level (all mothers as a group and all
infants as another) instead of on the individual dyad
and episode level. We made such decision for

Table 3. Results from post-hoc pairwise t-tests.
Comparison t-score p-value t-score p-value

Displacement

Infants Mothers

FF - SF 1.98 0.18 �3.30 0.01
FF - RE 0.39 1.00 1.33 0.59
SF - RE �1.18 0.75 3.35 0.01

Velocity

Infants Mothers

FF - SF 3.40 0.01 �6.51 0.00
FF - RE 1.25 0.67 �0.29 1.00
SF - RE �1.42 0.50 5.49 0.00

4Due to the observability constraint (elaborated in the Discussion) of the
original VAR model, we can only fit up to two TVPs at a time.
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Figure 4. Comparison of AR and CR Trajectories with the Unconditional TVP Models and GAM for Two Example Dyads.
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standardization to preserve some between-dyad differ-
ences and within-dyad variability across episodes
given the theoretically different natures of these three
episodes of the SFP. We expected that the TVPs,
namely, the time-varying AR coefficients, would be
adequate in capturing most of the within-person vari-
ability across episodes. However, the intercept parame-
ters in the TV-VAR model was estimated to be
significant, albeit small in magnitude (Table 4;
intb ¼ �0:067, intm ¼ 0:034). The significant intercepts
suggested that some signs of misspecification of the
VAR process noise covariance structure remained and
were manifested through the intercepts.

Within-dyad variations in AR parameters
across episodes
Results showed that on average, mothers and infants
manifested relatively large positive values of AR
parameters, or inertia, in head movements during the
SFP interactions (bb0 ¼ 0:730, bm0 ¼ 0:708). The epi-
sode-specific components in the model for time-vary-
ing AR parameters supported the experimental
manipulation in SFP as different episodes resulted in
different interaction dynamics indexed by head move-
ments. As shown in Figure 5, across all dyads, infants
showed lower levels of AR during the SF episode as
compared to FF, though the coefficient associated
with the contrast code for SF was not found signifi-
cant (bb1 ¼ �0:005). This might be related to the con-
struction of the contrast code for the SF effect, in
which the FF episode was grouped together with the

RE episode. However, contrary to our initial expect-
ation, there was greater similarity between infants’ AR
values during the RE and those from the SF, as
opposed to those from the FF episode (bb2 ¼ �0:017).
This may reflect infants’ recovery from distress devel-
oped during SF (sometimes referred to as the
“carryover” effect of SF; Haley & Stansbury, 2003). A
lower AR generally means that the observed process is
less predictable from previous observations. Here, it
reflects the infants making less consistent movements
in SF and RE as compared to FF.

Mothers on average showed the highest AR values
during SF (bm1 ¼ 0:031). An increase in the AR par-
ameter indicates that the movement is more predict-
able and consistent in time, and in the case of the SF
episode, it reflects the experimental design of mothers
being not responsive, thus making consistently no or
minimal head movements. Mothers on average also
showed higher levels of AR during the RE compared
to FF (bm2 ¼ 0:035), thus providing some evidence
for the carryover AR effect from the SF. Still, as can
be observed from Figure 5, mothers’ AR was on aver-
age lower in the RE than in the SF, possibly reflecting
mothers’ efforts to resume her emotional connections
with the infants through a variety of movements to
calm and/or distract the infants. In addition, the esti-
mated process noise variances of these two parameters,
warb and warm , remained statistically significant after
the inclusion of these covariates. This indicated that
there was still substantial between-individual and
across-time variability in these two AR parameters that
were not explained by the covariates.

Between-dyad differences in inertia based
on attachment
We found that the AR parameter for infants also dif-
fered depending on infants’ levels of attachment
security. After controlling for differences between epi-
sodes, infants who were more securely attached had
higher inertia in their head movements across all epi-
sodes (bb4 ¼ 0:012), which means that their head
movement were more predictable compared to those
less securely attached. These results are consonant
with Beebe et al. (2010)’s emotional engagement
results in which future securely attached infants exhib-
ited higher levels of self-regulation and lower levels of
responsivity to mother than future insecurely attached
infants, as well as Jaffe et al.’s similar (2001) findings
in the vocal coordination domain. Infants’ secure
attachment did not predict mothers’ AR parameter,
but it did have a significant interaction effect with
mother smiling on mothers’ AR parameter

Table 4. TV-VAR model parameter estimation results using
the state-space approach.

Estimate Standard Error 95% Confidence Interval

crmb �0.011 0.005 (-0.020, �0.002)
crbm 0.012 0.004 (0.004, 0.020)
intb �0.067 0.014 (-0.095, �0.039)
intm 0.034 0.013 (0.009, 0.059)
bb0 0.730 0.013 (0.705, 0.755)
bb1 �0.005 0.005 (-0.015, 0.005)
bb2 �0.017 0.008 (-0.032, �0.002)
bb3 �0.017 0.019 (-0.054, 0.019)
bb4 0.012 0.004 (0.003, 0.020)
bb34 0.008 0.006 (-0.004, 0.020)
bb5 0.027 0.009 (0.009, 0.045)
bm0 0.708 0.018 (0.674, 0.743)
bm1 0.031 0.006 (0.020, 0.042)
bm2 0.035 0.007 (0.021, 0.049)
bm3 �0.002 0.016 (-0.033, 0.030)
bm4 0.006 0.004 (-0.002, 0.014)
bm34 �0.018 0.006 (-0.030, �0.006)
bm5 0.084 0.012 (0.060, 0.107)
wb 0.273 0.004 (0.265, 0.281)
wm 0.219 0.003 (0.212, 0.225)
wbm 0.006 0.002 (0.002, 0.011)
warb 0.128 0.006 (0.117, 0.139)
warm 0.144 0.006 (0.132, 0.157)
AIC: 58986.19 BIC: 59165.30
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(bm34 ¼ �0:018), despite mother smiling itself not
having any direct influence on either mothers’ or
infants’ AR (bb3 ¼ �0:017, bm3 ¼ �0:002). Mothers
whose infants were more securely attached had lower
inertia in their head movements when they smiled
compared to when they did not (see Figure 5). This
suggests that they were more likely to show a greater
range of head motions when they were smiling. On
the other hand, mothers whose infants were less
securely attached showed comparable inertia in their
head movements regardless of whether they were
smiling. These findings suggested that mothers of
more securely attached infants exhibited greater
within-person differences in their head movement
when expressing positive affect–which might signal
their involvement in and receptivity to the interaction
–than mothers of less securely attached infants.

Results from GAM fitting of TV-VAR

We fit the model represented in Equation 12 to the
same dataset with 24 dyads, over a handful of choices
of number of basis functions (k) in thin plate regres-
sion splines. Figure 6 shows the estimated smooth
functions for each parameter under all the k values.
The choice of k made the biggest difference in moth-
er’s AR parameter (arm), some difference in mother’s
intercept parameter (intm), and almost no difference
in the other parameters. Comparing smoothed func-
tions of difference parameters, it appeared that moth-
er’s AR parameter had the highest variability across
time while the CR parameters were mostly flat (Figure
6). These observations were consistent with the con-
clusions from the state-space model approach. In add-
ition, according to the plot, mother’s intercept
parameter may also be varying across time. The

patterns of change in mother’s AR and intercept
parameters also matched roughly to the change points
of episodes in SFP (around time points 249 and 488).

The random sample based diagnostic in gam.-
check() did not support k being big enough for all the
k values we implemented. However, the estimated tra-
jectories suggested that wigglier functions in most of
the parameters had been smoothed out with the opti-
mized k, and for arm that did exhibite a difference
based on k, k¼ 160 already yielded fairly wiggly tra-
jectories. Given this, we stopped doubling k and chose
a k value based on examination of the plots. In the
following comparison between the state-space model
and GAM approaches, we adopt a k value of 20,
which generated some wiggliness but at the same time
also preserved a certain level of smoothness.

To begin with a relatively fair comparison of mod-
eling approaches, we compared results from the two
unconditional TVP models used in the state-space
model approach as a model building step with results
from fitting GAMs where certain parts of the model
in Equation 12 were constrained to be parametric. For
the unconditional model with time-varying ARs, the
intercept and CR parameters (f1, f2, f4 and f5) were
estimated as constants instead of functions of time,
and the same goes for the intercept and AR parame-
ters (f1, f2, f3 and f6) for the unconditional model with
time-varying CRs. Estimation results for the paramet-
ric coefficients are reported in Table 5, and the esti-
mated trajectories for TVPs are compared for two
dyads in Figure 4. We would like to note that despite
the TVPs not having any theoretically guided form,
the models compared under the state-space approach
and the GAM approach were still not entirely identical.
Other than having different functional forms, the two
TVPs in the state-space model approach were modeled

Figure 5. Differences in AR parameters dependent on whether mother was smiling, infant’s attachment tendency, and episodes.
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as a bivariate process, whereas in GAM the two func-
tions representing TVPs were not associated. Despite the
differences, estimates of the parametric coefficients for
the ARs (in a model with time-varying CRs) and CRs

(in a model with time-varying ARs) were similar in
magnitude and direction. There existed some discrepan-
cies in the estimates of intercepts. The estimated TVP
trajectories exhibited similar overall tendencies, with the

Figure 6. Time-varying Parameter Trajectories and Associated 95% Confidence Intervals Using Different Number of Basis
Functions (k).
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ones from the state-space model approach being more
“jiggly” due to the inclusion of random process noise
(Figure 4).

The state-space model approach did not support
the CR parameters as TVPs, but the time-invariance
CR parameters were significantly different from zero
with crmb ¼ �0:011 and crbm ¼ 0.012 in the final TV-
VAR model (Equations 2 and 14-16). In contrast,
although the smooth functions representing the
time-varying CR parameters were estimated to be
significant in GAM, the estimated time-varying CR
trajectories were of small magnitude (similar to the
results from the state-space model with unconditional
time-varying CRs) and only some portions of the cor-
responding confidence bands for the CR trajectories did
not include 0 in plots (e)-(f) in Figure 6. The mean val-
ues of the trajectories mirror these time-invariant esti-
mates (mean(crmb, tÞ ¼ �0:011, mean(crbm, tÞ ¼ 0:015).
Some discrepancies were observed in the estimated inter-
cept parameters and the covariance structure for process
noise of the head movement variables. The function rep-
resenting time-varying intercept for infants was not sig-
nificant in the GAM approach, and the estimated
process noise variances and covariance were slightly
larger compared to those in the state-space approach
(wb ¼ 0:394, wm ¼ 0:353, wbm ¼ 0:020). The GAM
approach also suggested the intercept parameter of
mother’s head movement to be time-varying, in contrast
to the time-invariant intercepts we imposed in our state-
space model.

To further facilitate the comparison between the
state-space model with TVPs in Equations 14-16 ver-
sus the GAM model of TVPs, estimated trajectories of
the shared TVP in both models, arb and arm, are plot-
ted for two dyads in Figure 7. Comparing between
dyads, the state-space approach, as discussed earlier,
was able to accommodate some between-dyad differ-
ences. The smoothed arb trajectory from the GAM
approach was roughly the mean trend in the
smoothed arb trajectories from the state-space

approach. Furthermore, the smoothed arm trajectories
from the state-space approach show a visible SF effect
in both dyads, where the mother’s AR during SF (the
middle chunk) was much flatter and also slightly
higher in value on average than the other two epi-
sodes. This offers a demonstration of how theory-
guided model can be helpful. The SF effect in moth-
ers’ AR is supported by the experiment design of SPF.
In the GAM TVP trajectories, the differences between
episodes were less salient but some changes in moth-
ers’ AR were still evident. On the other hand, it is
worth noting that the GAM model with enforced
smoothness yielded much narrower confidence bands
of the estimated trajectories compared to the state-
space model due to the differences between the two
approaches in handling group-based models. The indi-
vidual filtering and smoothing scheme adopted in the
state-space model approach resulted in confidence
bands reflecting the uncertainty around the estimates
of the specific dyad in each plot. Meanwhile, confi-
dence bands in the GAM approach generated through
model-implied predictions reflected uncertainly at the
mean sample level across all dyads.

In summary, in our particular TV-VAR model, the
GAM and the state-space model approach results sug-
gested similar overall dynamics in mother-infant
interactions in terms of the estimated (mean) values
of the AR/CR parameters, and both approaches
uncovered some degrees of SF effect in mothers’ head
movements. GAM accommodated more TVPs com-
pared to the state-space approach (6 vs. 2) but the
three parameters other than AR and mother’s inter-
cept exhibited relatively flat trajectories that hovered
closely around zero. In contrast, through the state-
space model, we were able to link dyadic head move-
ments to mothers’ facial cue of smiling and also
infants’ later attachment development. These are some
examples of parametric effects that are relatively
straightforward to specify within the state-space
framework, but are difficult to specify within the
GAM framework due to software-related constraints.

Discussion

As longitudinal designs and data become more prom-
inent in the study of human behaviors, models with
TVPs have also gained considerable traction over the
last decade. In this article, we applied a time series-
inspired dynamical systems model with TVPs to study
parent-infant co-regulation using automated measures
of head movements during the SFP. We compared
results from fitting variations of the TV-VAR model

Table 5. Unconditional TV-VAR model parametric coefficients
comparison between the state-space and GAM approaches.

State-space Approach GAM Approach

Unconditional CR Model
crmb �0.011� �0.012�
crbm 0.011� 0.016�
intb �0.076� 0.010�
intm 0.042� �0.002
Unconditional AR Model
arb 0.778� 0.785�
arm 0.796� 0.783�
intb 0.043� 0.010�
intm 0.040� �0.001
�a¼ 0.05.
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using two approaches: a parametric state-space
approach, and a semi-parametric approach utilizing
GAMs. The two approaches yielded similar inferential
results with regard to the mother-infant dyads’

dynamics as a group, but also some discrepancies in
the findings concerning the nature of the TVPs.

Both approaches can accommodate TVPs rather
flexibly, with the GAM approach being a

Figure 7. Comparison of AR Trajectories with the Parametric TV-VAR Model and GAM for Two Example Dyads Along with
Observed Data used for Modeling.
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nonparametric approach in the TVP part, and the
state-space approach accounting for additional within-
and across-individual variability in the TVPs via sto-
chastic process noises in the TVPs. Overall, the two
approaches differ in both their model formulation and
estimation details. Thus, the slight divergence in
results did not come as a surprise, but did suggest
important implications for future studies involving
TVPs. To begin with, the smoothing procedure
embedded in GAM with penalized regression splines
allows researchers to explicitly control the smooth-
ness/wiggliness of TVP trajectories through the
smoothing parameter (k), if desired. In the state-space
modeling approach, the filtering and smoothing pro-
cedures are done individually for each unit of analysis
so the smoothed TVP trajectories are also individually
adapted to observed data. As such, compared to the
smoothed TVP trajectories from GAM, the estimated
TVP trajectories from the state-space approach tend
to appear “rougher” when process noises are included
to allow nuanced fluctuations in each individual’s
observed data be captured as process noises in the
TVPs. Thus, the inclusion of process noises in the
TVPs in the state-space approach, and the explicit
regularization (i.e., smoothing) of the TVP trajectories
through the penalty term in the GAM approach are
two key features that set these approaches apart from
each other.

The roughness of the TVP trajectories in the state-
space approach is contributed in part by other reasons
as well. Specifically, the state-space modeling approach
is able to accommodate both within- and between-
unit (e.g., individuals and dyads) differences in the
TVPs essentially as latent variable scores, even though
model fitting is performed at the group level, with
time-invariant parameters that are constrained to be
equal across units. In contrast, fitting a group-based
model in the GAM approach is sensitive to only the
universal trends and effects across all units. In prin-
ciple, it is possible to adapt the TV-VAR models
implemented in the two modeling approaches to
obtain a model that is more comparable across frame-
works. For instance, to confine the TVPs in the state-
space model approach to be the same across unit (by,
for example, dropping the process noise structure and
adopting a functional form that is not dependent on
unit-specific characteristics), or to do individual
model-fitting in both approaches. Here, we can dem-
onstrate with two dyads that some between-dyad dif-
ferences exist in the AR trajectories, examining the
results from both approaches with model fitting to
each individual dyad (Figure 8). Alternatively, it is

also possible to specify some penalized spline func-
tions as a state-space model (e.g., cubic splines; Chow
& Zhang, 2008; Wahba, 1978). We did not adopt
these procedures because we were interested in inves-
tigating specific, substantively motivated hypotheses in
the state-space approach. In our view, some of these
differences in results actually made our illustration
more informative.

The two approaches are also characterized by dis-
tinct model identifiability constraints. In state-space
models, one well-known model identifiability condi-
tion is for the system of interest to be observable. In
other words, the system’s underlying latent variable
values can be uniquely determined from the observed
measurements (Bar-Shalom et al., 2001). As such, the
number of TVPs that can be estimated as additional
latent variables in a state-space model is also limited
by the number of observed endogenous (dependent)
variables and latent variables that are already present
in the model aside from the TVPs. Based on Gates
et al. (In Press), in a model with q observed variables
and p latent variables (not including TVPs), the max-
imum number of TVPs identifiable from the data is
the minimum of p and q. Thus, in the context a
VAR(1) model, for instance, the model would not be
observable if more than two TVPs are present in the
model. However, as distinct from the state-space
approach, each smooth function in GAM that is tied
to a unique predictor is identified via implicit
constraints on the basis coefficients, namely, by
requiring that the basis coefficients associated with
any particular predictor to sum to zero over all
possible values of that predictor. Because lag-1 mother
and infant head movement variables are included
in GAM as predictors that are distinct from the
dependent variables (the lag-0 mother and infant
head movement variables), we were able to allow for
time-dependent smooths of the AR as well as CR
parameters with the same data. However, uninformed
expansion of the order of the VAR model to allow
higher-lag coefficients (e.g., lag-2, lag-3 and so on)
to be time-varying may yield over-fitting and is thus
not recommended. In practice, we recommend that
researchers first use some screening procedures, such
as some of the ones we adopted in this article, to
examine evidence for TVPs prior to freeing them up
in completely unsupervised ways.

In summary, the two approaches have unique
benefits that may make them more appealing in some
cases than others. If one wants to explicitly model
multivariate associations among system variables and
with other TVPs, or to link the change in system
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patterns (manifested in TVPs) with between-unit and
within-unit characteristics to study the mechanisms
of change, then the state-space model offers a
more straightforward approach to implement selected
parametric functions that maybe difficult or even
impossible to implement and interpret in GAM.
The state-space model approach can also accommo-
date a measurement structure, which is not possible
in GAM. On the other hand, in the absence of clear
parametric modeling goals, the GAM approach offers
another advantage besides the flexibility associated
with a model-free approach: the dependent variable
of interest can conform to any distribution from the
exponential family, including the Normal, Binomial,
and Poisson distributions as special cases. This opens
up the possibility of using binary and count data
as system variables. In addition, we note that GAM
through mgcv is only one spline-based functional
regression method out of many that could be applied
to estimate models with TVPs. Other functional
regression software packages exist and may utilize
slightly different spline formulations, penalty terms
and optimization criteria (e.g. as defined within a least
squares vs. likelihood framework). For example, the
SAS Macro TVEM (Li et al., 2015) utilizes P-splines

and B-splines, and has extensions to accommodate
data nesting, clustering and different sampling
weights. Other R packages include funreg (Dziak
et al., 2019), npmlda (Wu & Tian, 2018) and refund
(Goldsmith et al., 2019). Direct comparisons of these
other spline-based approaches for fitting models with
TVPs are beyond of the scope of this article, but war-
rant further attention in a future study.

Both approaches in this study utilized a group-
based model-fitting strategy, and between-unit
variations were controlled by including dyad-specific
characteristics into the state-space model, and allowing
for stochastic system noises. A way to completely sep-
arate between-unit and within-unit variations is to fit a
multilevel TV-VAR model, for which between-unit var-
iations are modeled by random effects. mgcv does have
the option to include random effects; it is also possible
in the state-space approach by dynr to insert and esti-
mate selected random effects as part of the latent vari-
able vector concurrently with the other TVPs.
However, this expands the dimension of the latent vari-
ables very quickly and brings with it other identifica-
tion issues. Bayesian methods may be a more viable
alternative in this case. For example, the dynamic
structural equation modeling toolbox in the software

Figure 8. TVP Trajectories for Two Dyads when Fitting the State-space Model and GAM to Each Individual Dyad.
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Mplus (e.g. Asparouhov et al., 2018; Hamaker et al.,
2018), which is implemented through Bayesian estima-
tion, or the R package ctsem (e.g. Driver & Voelkle,
2018), has the option of using Stan (Carpenter et al.,
2017) to fit multilevel dynamic models. These exten-
sions warrant close examination in future work.

The trajectories of the VAR processes investigated in
this study (i.e., the mother and infant trajectories) were
assumed to vary smoothly over time (i.e., differentiable
with respect to the latent variables). Although not the
focus of this article, under certain occastions the key
processes of interest may display non-continuous,
abrupt changes and the corresponding TVP patterns.
Some approaches that would account for such kind of
changes include (but are not limited to) regime-switch-
ing models (e.g. Chow et al., 2018), threshold AR mod-
els (e.g. De Haan-Rietdijk et al., 2016; Hamaker et al.,
2009), and using a two-step process of change point
detection followed by a parametric model with change
point entered as known data.

Beyond the methodological insights discussed thus
far, the article also offers an example of how dynamic
models can be applied to investigate the temporal evo-
lution of regulatory behaviors, and how TVPs can be
utilized to capture within-dyad variations and
between-dyad differences. To our knowledge, this art-
icle is the first effort to apply dynamic systems tech-
nique to examine co-regulation in mother-infant
dyads via automated head movement measures. In
confirmation with experimental manipulation and
similar to the results obtained in Hammal et al.
(2015), we detected some differences in mothers’ head
movement dynamics in the SF than in other episodes,
as revealed in mothers’ AR parameter. This suggests
that the inertia of mothers’ head movements, as revealed
by their AR parameter, may serve as a proxy for under-
standing key changes in mother-infant intrinsic and
interactive dynamics during the SFP. The decline in
infants’ AR parameter in the SF episode – though not
statistically significant due to our a priori choice of con-
trast coding scheme, and the prolonged decline into the
RE episode, are all in accordance with the established
results in the literature on increased negative emotions
during SF, the persistence of such emotions into RE
(e.g. Toda & Fogel, 1993; Tronick et al., 1978). This art-
icle also linked infants’ later attachment and the early
interactive patterns with their mothers by showing that
infants’ dynamics in interaction and also their mothers’
display of facial affect at 4months are associated with
15-month attachment measure.

This article highlights the utility of using auto-
mated head movements in the study of parent-infant

interactions to understand the communication and
co-regulation patterns between infants and mothers.
This automated measure is reasonable in cost,
unaffected by the subjective biases from human raters,
and allows quantification of dynamic movement pat-
terns on a frame-by-frame basis. An ambiguity is
whether infant head movement is more associated
with the valence or arousal dimension of emotion.
Hammal et al. (2015) found that infants’ head move-
ment was greater during tasks intended to elicit nega-
tive emotion and was strongly related to observer
ratings of affect intensity. Caution needs to be exer-
cised in interpreting our analytic results involving
head movements as indices of emotion. The context
within which the interactions take place may strongly
influence whether head movement is more closely
associated with valence or arousal. In our study, such
frame-by-frame quantification also made the raw data
fairly noisy. As described in Data Descriptions and
Preprocessing under the Motivating Example, the raw
data went through four steps of preprocessing before
analyses: aggregation, variable combination, detrend-
ing within dyad and episode, and standardization with
group. The decisions on whether and how to perform
each step were based on the phenomenon and
research question. With different research questions,
the data can be preprocessed in different ways to ful-
fill the need. For example, in our study, aggregation
was done to collapse the sampling rate within the
time-scale of our phenomenon of interest – behavioral
coregulation. If the researcher’s interest was on a finer
time-scale (e.g. simple movement tendencies for a sin-
gle person), s/he can choose to not aggregate or
aggregate into smaller intervals, and vice versa. With
a similar dataset, a researcher can choose to detrend
or not based on whether the main level change is of
interest and needs to be incorporated in the modeling
efforts. Lastly, whether to standardize and what level
to standardize on depend on what kind of comparison
the research would like to see. In our study, we stand-
ardized the data on a rather broad level given we
wanted to compare both between dyads and within
dyad across episodes. If the research interest is to
extract common patterns of within-dyad dynamics
and less about between-dyad differences, standardiza-
tion can be done within each dyad instead.

One limitation of the current study is its small sam-
ple size. The analytic sample size was reduced to ensure
we had enough data per dyad that spanned all three
SFP episodes. Therefore, dyads in which either member
had long chunks of missing data in their head move-
ments were removed from the analytic sample. A
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common reason for such missing data was that the
individual moved out of range of the video camera, or
that the individual’s face was at a position where the
software tracker could not identify the face anchors.
Such missingness may potentially be classified as non-
ignorable missingness (Little & Rubin, 2002), as the
reason for removal was related to the variable of inter-
est (head movements). Future studies should better
account for, or directly incorporate modeling of the
missing data patterns in the study, before generalizing
the findings to other contexts and samples.

In conclusion, this article provides important
insights on two of the most widely utilized methods
for fitting dynamic models with TVPs — specifically,
TV-VAR. Our empirical application further attests to
the importance of considering the presence of TVPs,
and the issue of self-organization, in the study of
human dynamics. It also validated the feasibility of
direct modeling of automated measures of head move-
ments from a dynamic systems perspective to uncover
aspects of parent-infant interaction and co-regulation.
In addition, it provided further evidence for the link
between interactive patterns early in life to the infant’s
later development of attachment.
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Appendix

########### R Code Demonstration ###########

# Loading the libraries

library(dynr)# version 0.1.12-5

library(mgcv)# version 1.8-22

library(quantmod)# version 0.4-14

# The follow script needs a long-format data frame

# that should roughly looks like:

# (system variables y_baby, y_mom and other covar-

# iates omitted)

# id id.session Time.agg Time.withinSession SF RE

# 1 1.1 1 1 -1 -1

# 1 1.1 2 2 -1 -1

# .. .. .. .. .. ..

# 1 1.2 258 1 2 0

# 1 1.2 259 2 2 0

# .. .. .. .. .. ..

# 1 1.3 497 1 -1 1

# 1 1.3 498 2 -1 1

# .. .. .. .. .. ..

# 2 2.1 1 1 -1 -1

# 2 2.1 2 2 -1 -1

# .. .. .. .. .. ..

#### State-space model approach: dynr —

dynrdata <- dynr.data(Data, id=“id.session”,

time=“Time.withinSession”,

observed=c(“y_baby”,”y_mom”),

covariates=c(“smile”,”SF”,”RE”,

“Richter”,

“var_baby”,

“var_mom”))

# Measurement model for linking latent states

# to observed variables

meas <- prep.measurement(

values.load=matrix(c(1,0,0,0,

0,1,0,0),ncol = 4,byrow=T),

params.load=matrix(“fixed”,ncol = 4,nrow = 2),

state.names=c(“baby”,”mom”,”arb”,”arm”),

obs.names=c(“y_baby”,”y_mom”)

)

# Initial conditions for the dynamic model

initial <- prep.initial(

values.inistate=c(0,0,.5,.5),

params.inistate=c(‘fixed’, ‘fixed’,

’beta_b0’,’beta_m0’),

values.inicov=diag(c(rep(1,2),rep(.1,2))),

params.inicov=diag(‘fixed’,4))

# Process noise and measurement error variances

mdcov <- prep.noise(

values.latent=matrix(c(.5,0.1,0,0,

0.1,.5,0,0,

0,0,0.1,0,

0,0,0,0.1), ncol = 4,byrow=T),

params.latent=matrix(c(‘zv_mom’,’cov_bm’,0,0,

‘cov_bm’,’zv_baby’,0,0,

0,0,’zv_arb’,0,

0,0,0,’zv_arm’), ncol = 4,byrow=T),

values.observed=diag(c(0,0)),

params.observed=diag(c(‘fixed’,’fixed’),2))

# State-space model formula

# The final model in the article with only time-

# varying ARs is specified below:

formula=list(

list(baby�intb+arb�(baby-intb)+crmb�(mom-intm),
mom�intm+arm�(mom-intm)+crbm�(baby-intb),
arb�beta_b0+beta_b1�SF+beta_b2�RE

+beta_b3�smile+
beta_b4�Richter + beta_b34�Richter�smile

+beta_b5�var_baby,
arm�beta_m0+beta_m1�SF+beta_m2�RE+beta_

m3�smile+
beta_m4�Richter + beta_m34�Richter�smile

+beta_m5�var_mom

))

# A dynr formula object with starting values for

# parameter optimization

dynm <- prep.formulaDynamics(formula=formula,

startval=c(crmb=.03,crbm=.03,

intb = 0.1,intm = 0.1,

beta_b0=0.5,beta_b1=0.01,

beta_b2=0.01,

beta_b3=0.5,beta_b4=0.01,

beta_b34=0.01,

beta_m0=0.5,beta_m1=0.01,

beta_m2=0.01,

beta_m3=0.5, beta_m4=0.01,

beta_m34=0.01,

beta_b5=0.01,beta_m5=0.01

), isContinuousTime=FALSE)

# Combine all the model components specified above

# into one dynr model object

dynrmodel<-dynr.model(dynamics=dynm,measurement=meas,

noise=mdcov, initial=initial,

data=dynrdata, outfile=“SSMTVP.c”)

# Run the parameter optimization with filtering and

# smoothing for the states

modelRes <- dynr.cook(dynrmodel)
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# Result summary

summary(modelRes)

#### GAM approach: mgcv —

# Created lag-1 variables

Data$bL=unlist(by(Data$y_baby,Data$id,Lag,k=1))

Data$mL=unlist(by(Data$y_mom,Data$id,Lag,k=1))

# Run a GAM with:

# time-varying intercepts: s(Time.agg)

# time-varying AR: s(Time.agg,by=bL) for y_baby, for

example

# time-varying CR: s(Time.agg,by=mL) for y_baby, for

example

# 20 basis functions: k=20

gam_biv<-gam(list(y_baby�-1+s(Time.agg,k=20)+

s(Time.agg,by=bL,k=20)+s(Time.agg,by=mL,k=20),

y_mom�-1+s(Time.agg,k=20)+

s(Time.agg,by=mL,k=20)+s(Time.agg,by=bL,k=20)),

family=mvn(d=2),data=Data)

# Result summary

summary(gam_biv)

# Process noise variance-covariance

solve(crossprod(gam_biv$family$data$R))
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